EDITORIAL
JUNIOR BALKAN OLYMPIAD IN INFORMATICS, DAY 1

ProBLEM: AB

Proposed by: prof. Ionel-Vasile Pit-Rada

We use the terms AB-permutation and AB-transposition for permutations and transpositions of
the K elements which obey the AB matrix constraints. (A transposition is a permutation where
exactly two elements are swapped, such as (12435).) We will show that if an AB-permutation
exists, then an AB-transposition also exists.

Recall that any permutation consists of a composition of cycles. For example, the permutation
(42613578) consists of the cycles3 -5 — 6 — 3 and 1 — 4 — 1, as well as the single-element
cycles 2, 7 and 8. For any AB-permutation P we will show how to find an AB-transposition
between two elements on the same cycle. Once we find it, we simply put the other elements
of P back on their original positions. This will not break any constraints, because the original
matrix was an AB-matrix.

So let us consider one of the cycles in P, call it xg, x1,...,X._1,%. = xo. Let [a;, b;] be the range
of values that can replace x; in the matrix. Obviously, a; < x; < b; for all i. The values of a;, b;
can be deduced from the values neighbouring x;: a; is the maximum of the values to the left
and above x; (if they exist), plus one, and b; is the minimum of the values to the right and below
x; (if they exist) minus one.

Assume without loss of generality that x is the minimum value (we can rotate the cycle
if not). Then the values xy, xq,... will increase for a while, until at some point x; there will
necessarily exist a decrease, x; < x;_1 (d can be equal to c if the cycle consists of exactly one
increasing streak). So there exists some i > 1 such that x;_; < x; < x;. We will show that the
transposition (x;,x;) is an AB-transposition. Let us collect some useful inequalities.

(1) a; < x; < b;, because x; obviously obeys its own range.
(2) ag <x45 < by, similarly.

(3) xj_1 <x4 <x; <x4_1, by our choices of d and i.

(4) a; <x;_1 < b; because x;_; fits in place of x; in the cycle.
(5) x4-1 < b, because x;_; fits in place of x; in the cycle.

From (1), (3) and (4) we get a; < x;_1 < x4 <x; <b;. Therefore, x; obeys the constraints of
x;. Conversely, from (2), (3) and (5) we get a; < x5 < x; < x;_1 < by. Therefore, x; obeys the
constraints of x;. By definition, this means that (x;, x;) is an AB-transposition.

Now, we will explain how to determine whether there is any AB-transposition. We will
iterate over the values X in increasing order. While iterating, we will keep a stack with all the
previous positions in which the current position can still be placed. In other words, at a step of
the iteration x;, we will keep a stack of all previous positions x; for which x; < a;. Therefore
x; can be placed in place of all positions x; from the stack. For an AB-transposition, we need
to check whether there is any x; that is large enough to fit in [a;,4;]. For this, it is sufficient to
check the maximum value of the all x;, which is the actually the top of the stack.

Now, regarding keeping the stack up-to-date. At each iteration step, we need to eliminate
all x; which have a b; < x;. It is not necessary to remove them from the middle of the stack,
but instead we will remove them from the top of the stack in a lazy manner. As such, we will
pop all tops of the stack that have b; < x;. Once a top exist for which x; < b, we check that
top whether it generates a swap with x;. If yes, then the solution is not unique. If not, then we
continue to the next iteration.

Here is pseudo-code following this idea:

(1) Iterate over xy,...,x, keeping a stack S.



EDITORIAL JUNIOR BALKAN OLYMPIAD IN INFORMATICS, DAY 1 2

(2) Suppose we are considering x;. While S is not empty:

(a) Let x; be the top element of S.

(b) If b; < x; then eliminate x; and re-try this loop.

(c) If x; < a; then add x; to S and exit this loop.

(d) Otherwise, output the pair (x;, x;) as being AB-transposition.
(3) If no pair has been found then conclude that no AB-transpositions.

Solution proposed by Tamio-Vesa Nakajima. Consider some query. Suppose that the query
deals with x; <... < x;. For each x;, let [I;,r;] be the interval of values that could replace x;
while maintaining the orderedness properties of the matrix. (Observe that [; is the maximum of
the values above and to the left of x; plus one, and r; is the minimum of the values to the right
and above of x; minus one.)

Theorem. The elements xy,...,xy can be reordered while maintaining the orderedness properties of
the matrix if and only if a pair (x;, x;) exists that can be swapped while maintaining these properties.

Thus it is sufficient to look only for a pair of elements that can be swapped. We can then use
the following stack-based algorithm:

(1) Iterate over xq,...,xx, keeping a stack S.
(2) Suppose we are considering x;. While S is not empty:
(a) Let x; be the top element of S.
(b) If r; < x; then eliminate x; and re-try this loop.
(c) If x; < I; then add x; to S and exit this loop.
(d) Otherwise, output the pair (x;, x;) as being swappable.
(3) If no pair has been found then conclude that no swappable pair exists.

Why is this algorithm correct? We will show that the algorithm is sound (when it outputs a
pair it always outputs a correct pair) and complete (if a swappable pair exists then the algorithm
must output some pair).

Soundness: Observe that if we output the pair (x;, x;) then we know that x; <r, and I; < x;
Furthermore we know, by the order in which we go through the elements, that x; < x;,
and thus I; < x; < x; < r;. All of this information is sufficient to deduce that we can swap
x; with x;.

Completeness: First observe that if some x; is eliminated from the stack by some x;, then
x; < x; and r; < x; < r;. Furthermore x; must eventually be added to the stack (unless we
already output some pair). This means that after some x, was added to the stack, some
x, must always exist in the stack, such that x, <x, and r, <7,.

Now suppose we can swap some pair, and suppose that (x,, x;) is the swappable
pair that minimizes the value of x;, and if there are several such pairs. If we reach x;
in the iteration (if we haven’t then we have already outputted some pair and there is
nothing to prove) then at some point x, was added to the stack; thus as shown above
the stack contains some x, where x, < x,, and r, < r,. Since we know already that
I, < x, and x;, < r, (since we can swap x, and x;) it follows that [, < x, < x;, < 1, and
ly <xp <xp <r,<ry—in other words some element x, exists in the stack that can be
swapped with x;.

If this element is ever at the top of the stack then we will surely output the pair
(x4, xp). Until the element reaches the top of the stack, if x; is the element at the top
of the stack, then it is not possible for x; < [, (since I, < x,; < x;) — thus we must
either output some other pair, or pop an element of the stack. It follows that we must
eventually output some pair, as required.



EDITORIAL JUNIOR BALKAN OLYMPIAD IN INFORMATICS, DAY 1 3

ProBLEM: MPF

Proposed by: prof. Daniela Lica
Consider the following notations:

e VMAX the maximum value that can be assigned to X, with respect to the problem’s
constraints;

e Maxp[i] the largest prime divisor of the positive integer i, where 1 <i < VMAX. This
can be computed in O(VMAXlog VMAX) time complexity using an algorithm similar
to the Sieve of Eratosthenes. When marking elements as non-prime, we save the prime
number that divides it. Because the primes are traversed in increasing order, the last
saved divisor is also the largest. Thus, using operation 1 once, a positive integer X
becomes X/Maxp[X];

e Level[i] the sum of the exponents from the prime factor decomposition of the positive
integer i, where 1 <i < VMAX (this can be computed along with the MaxP[] array, such
that Level[X] = 1 + Level[X/Maxp[X]]). In fact, for an integer 7, Level[i] represents the
minimum number of operations of type 1 that need to be applied successively on i for it
to become equal to 1 and, at the same time, the minimum number of type 2 operations
that need to be applied successively on 1 to obtain i;

e Query(i,j) the minimum number of operations that need to be applied successively on
i for it to become equal to j. Obviously Query(i, j) = Query(j,i).

Subtask 1. We precompute the results for each possible pair of numbers, with approximately
O(VMAX?T) time complexity, where T is the number of prime numbers less than or equal to
VVMAX. We use a 2D array ans[i][j] = k, where Query(i,j) = Query(j,i) = k. Every i-th line
can be computed starting using a fill algorithm, starting from the number i with the help of
a queue data structure (FIFO), processing each number from 1 to VMAX exactly once. When
processing a state X, we try to consider state X/Maxp[X] (type 1 operation applied on X) and
all states j- X, where j is a prime number, j > Maxp[X] (type 2 operation applied on X).

For each query, the output can be provided in O(1) time. Final time complexity for answering
all queries is O(Q).

Subtask 2. For each query we will compute the prime factor decomposition of the two numbers
(X,Y)in O(VVMAX) time complexity. Consider the number Z the maximum number obtained
as an intermediary value in both transformations of X to 1 and Y to 1. The value of Z is in
fact the product, in order, of the smallest common prime factors of X and Y. The answer for
Query(X,Y) = (Level[X] — Leve[Z]) + (Level[Y] — Level[Z]). This is because it takes Level[X] -
Level[Z] operations of type 1 to transform X into Z, and then another (Level[Y] - Level[Z])
operations of type 2 to transform Z into Y. The final complexity for all queries is therefore

0(Q- VVMAX).

Subtask 3. Similarly to the previous approach, for each query pair (X, Y), we will determine
the value of Z. The approach will follow the transformation of X and Y to the value 1, until
a common value Z is found. While the two values X and Y are different (i.e. a Z value has
not been found), we will pick the maximum of X and Y and apply an operation of type 1 to
it, thus getting closer to the value of Z. The maximum complexity of one individual query is
determined by the maximum number of prime factors that a value can have - O(log, VMAX).
The final complexity is O((Q + VMAX)-log, VMAX)



EDITORIAL JUNIOR BALKAN OLYMPIAD IN INFORMATICS, DAY 1 4

PrRoOBLEM: ROBOCLEAN

Proposed by: prof. Zoltan Szabo

Solution proposed by Tamio-Vesa Nakajima. First, observe that the parity of the length of any
path from some point in the grid to some other point in the grid is fixed. To see why, consider a
checkerboard pattern overlaid on top of the grid. If the colour of the starting cell is equal to the
colour of the ending cell, then any path between them has odd length; otherwise, it must have
even length. Thus, observe that if we can always create a path of length NxM or NxM -1,
then we will always create a path of optimal length — if we create one of length N x M then
it is obviously the longest possible path, and if it is of length N x M — 1 then a longer path
of length N x M is impossible due to parity. We will now describe a recursive algorithm that
always generates such a path.

First, assume without loss of generality that we want to create a path between (1,1) and (i, j),
and also that i > j, and if i = j then N < M. By rotating and flipping the matrix it is always
possible to reach this case. Note that since (7,j) # (1,1) it follows that i > 1. Our algorithm will
have two cases.

Case 1, n > 2: Observe that by our conditions it is impossible for (i,j) = (2,M) or for
i = 1. In this case we can therefore always end our path with the sequence (2, M) —
(L,M) —... > (1,1). Thus we can reduce to the case of finding a path from (i, j) to (2, M)
without using the first line — or equivalently finding a path from (i —1,) to (1,M) in
an (N — 1) x M matrix.

Case 2, N = 2: In this case we can prove that either (i,j) =(2,1) or (i,j) = (2,2). In either
case our pathis (i,j) »... > (2, M) > (1,M) —» ... > (1,1).

The algorithm has the following steps:

(1) the matrix is rotated until the exit cell lands on (1,1),i.e. L, =1and C, =1;

(2) the matrix is then transposed (i.e. cell (i, j) becomes (j,7)) in order to obtain L; > C;, and
if L; = C; we want to obtain N < M;

(3) we add to the path the sequence of cells (1,1),(1,2),...,(1,M),(2,M), and from here we
recursively solve the smaller task of finding the best path from (2, M) to (L, C;), which
is equivalent to finding a path from (1, M) to (L; —1,C;) in a (N — 1) x M matrix;

(4) the steps are repeated until we obtain a matrix with only 2 rows for which we construct
the path using the method mentioned in the second case of the above demonstration.

A careful implementation is needed to remap the North, South, East and West directions
when rotating or transposing the matrix.
We will look at the path generated by the proposed approach on a couple of examples.

Example 1. Considering N =6, M =9, the starting cell at (4,6), and the exit cell at (6,1).

All cells are thus cleaned by the robot and the sequence of moves is the following:
ENWWSSEEENNNWWWWSSSSE EEEENNNNNWWWWWWSSSSWNNNNNWSSSSS



EDITORIAL JUNIOR BALKAN OLYMPIAD IN INFORMATICS, DAY 1

Example 2. Considering N =5, M =9, the starting cell at (2, 3), and the exit cell at (5,9).

In this example a single cell is left uncleaned. The sequence of moves is as follows:
ESWWWNNEEEESSSWWWWSEEEEENNNNESSSSENNNNESSSS

Solution proposed by Cristian Fradncu. An alternative solution, to compute the path in reverse:

(1) At each step consider the (at most) four possible moves to the neighboring cells;

(2) Choose the cell that’s farthest from the robot’s start position, using the Euclidean
distance;

(3) Incase of equal distance choose the cell that has more possible following moves (i.e. more
adjacent neighbors not yet in the path);

(4) Repeat until reaching the starting point.

This algorithm generates the same paths as the previous solution on the examples mentioned
above.



EDITORIAL JUNIOR BALKAN OLYMPIAD IN INFORMATICS, DAY 1

ScienTiric COMMITTEE

The problems were prepared by:

Gheorghe-Eugen Nodea (chair) - “Tudor Vladimirescu” National College, Targu Jiu
Adrian Panaete - “A.T. Laurian” National College, Botosani

Daniela Elena Lica - Centre of Excellence, Ploiesti

Ionel-Vasile Pit-Rada - “Traian” National College, Drobeta Turnu Severin
Zoltan Szabo - County School Inspectorate, Mures

Radu Voroneanu - Google

Vlad Gavrild - University of Cambridge

Emanuela Cerchez - “Emil Racovitd” National College, Iasi

Marinel Serban - “Emil Racovitd” National College, Iasi

Mihai Bunget - “Tudor Vladimirescu” National College, Targu Jiu

Tamio-Vesa Nakajima - Oxford, Computer Science department, UK

Bogdan Iordache - University of Bucharest

Cristian Francu - Clubul Nerdvana Bucuresti

Cosmin Pit Rada - Bolt

Ciprian-Daniel Chesca - “Grigore C. Moisil” Technological High School, Buzau
Marius Nicoli - “Fratii Buzesti“ National College, Craiova

Dan Narcis Pracsiu - “Emil Racovita” Theoretical High School, Vaslui

Flavius Boian - “Spiru Haret” National College, Targu Jiu

Petru Simion Oprita - Liceul Regina Maria Dorohoi

Andrei-Costin Constantinescu - ETH Zurich



	Problem: AB
	Solution proposed by Tamio-Vesa Nakajima

	Problem: MPF
	Problem: Roboclean
	Solution proposed by Tamio-Vesa Nakajima
	Solution proposed by Cristian Frâncu

	Scientific Committee

