Problem Maximum Prime Factor

Input data	stdin
Output data	stdout

Let X be a strictly positive integer and p be its maximum prime factor. For $X=1$, let $p=1$. We define two types of operations that can be done on X :

Operation 1. X is divided by p, thus becoming X / p.
Operation 2. X is multiplied by a prime number k such that $p \leq k$, thus becoming $X \cdot k$.
Given Q pairs of strictly positive integers (X, Y), determine for each pair the minimum number of operations of either type required to transform X into Y.

Input Data

The input consists of $Q+1$ lines. The first line contains the value of Q, representing the number of pairs (X, Y). Each of the following Q lines contains two space separated strictly positive integers $X Y$.

Output Data

Output Q lines, the i-th of which contains a single integer representing the minimum number of operations for the i-th pair.

Restrictions

- $1 \leq Q \leq 1000000$
- $1 \leq X, Y \leq 4000000$
- This problem has individual test scoring. See the notice for more details.

$\#$	Points	Restrictions
1	24	$1 \leq X, Y, Q \leq 1000$
2	48	$1 \leq X, Y \leq 100000$
3	28	No further constraints.

Examples

Input data		Output data	
4	2		
4	10	3	
2	9	1	
6	2	0	
12	12		

Explanations

For (4,10): 4 becomes 2 using an Operation 1, then becomes 10 using an Operation 2.
For (2, 9): 2 becomes 1 using an Operation 1, then 3 using an Operation 2, then 9 using an Operation 2.
For (6,2): 6 becomes 2 using Operation 1.
For $(12,12)$: The numbers are equal, so no operation is required.

