

Junior Balkan Olympiad in Informatics

Day 1, Wednesday 31st August, 2022

Problem Maximum Prime Factor

Input data	stdin
Output data	stdout

Let *X* be a strictly positive integer and *p* be its *maximum prime factor*. For X = 1, let p = 1. We define two types of operations that can be done on *X*:

Operation 1. *X* is divided by *p*, thus becoming X/p.

Operation 2. *X* is multiplied by a prime number *k* such that $p \le k$, thus becoming $X \cdot k$.

Given *Q* pairs of strictly positive integers (X, Y), determine for each pair the minimum number of operations of either type required to transform *X* into *Y*.

Input Data

The input consists of Q + 1 lines. The first line contains the value of Q, representing the number of pairs (X, Y). Each of the following Q lines contains two space separated strictly positive integers X Y.

Output Data

Output Q lines, the *i*-th of which contains a single integer representing the minimum number of operations for the *i*-th pair.

Restrictions

- $1 \le Q \le 1\,000\,000$
- $1 \le X, Y \le 4\,000\,000$
- This problem has individual test scoring. See the notice for more details.

#	Points	Restrictions
1	24	$1 \le X, Y, Q \le 1000$
2	48	$1 \le X, Y \le 100000$
3	28	No further constraints.

Examples

Input data	Output data	
4	2	
4 10	3	
2 9	1	
6 2	0	
12 12		

Explanations

For (4, 10): 4 becomes 2 using an Operation 1, then becomes 10 using an Operation 2.

For (2, 9): 2 becomes 1 using an Operation 1, then 3 using an Operation 2, then 9 using an Operation 2. For (6, 2): 6 becomes 2 using Operation 1.

For (12, 12): The numbers are equal, so no operation is required.